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Abstract 

Background/aims The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) among indi-
viduals with hyperuricemia is significantly high. The aim of this study was to identify effective biomarkers 
for the detection of MASLD among patients with hyperuricemia.

Method We conducted an analysis involving 3424 participants with hyperuricemia from the National Health 
and Nutrition Examination Survey (1999–2020). To identify potential significant variables, we employed Boruta’s 
algorithm, SHapley Additive exPlanations (SHAP) and random forests. Multivariable logistic regression models were 
utilized to assess the odds ratio (OR) of developing MASLD. To evaluate the accuracy and clinical value of our predic-
tion model, we employed receiver operating characteristic (ROC) curves and decision curve analysis (DCA) curves.

Results Among the study population of 3424 participants (mean [SD] age, 54 [20] years, 1788 [52.22%] males) 
with hyperuricemia, 1670 participants had MASLD. Using Boruta’s algorithm, SHAP and random forests, our analysis 
suggested that Triglyceride Glucose-Waist Circumference (TyG_WC) was one of the most significant variables in pre-
dicting MASLD risk, with an area under the receiver operating characteristic (AUROC) of 0.865. The restricted curve 
spline (RCS) revealed a positive association between the odds ratio of TyG_WC and MASLD, when compared with low-
est quantile of TyG_WC, the risk of MASLD for highest quantile was 137.96 times higher. The predictive strategy incor-
porating TyG_WC notably enhanced the clinical model, with threshold probabilities spanning from approximately 0% 
to 100%, resulting in a significant improvement of the net benefit.

Conclusions Our analysis found that TyG_WC was one of the most significant variables in predicting MASLD risk 
among individuals with hyperuricemia.
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Introduction
Metabolic dysfunction-associated steatotic liver disease 
(MASLD), the latest term for steatotic liver disease asso-
ciated with metabolic syndrome, is a prevalent condition 
currently estimated to affect up to one third of the global 
adult population worldwide  [1]. MASLD is a common 
disease in which the liver accumulates excessive fat, with-
out the presence of significant alcohol consumption. The 
increasing prevalence of MASLD is anticipated to rise in 
the coming decade, as a result of the globalization and 
the influence of western cultures. This trend is parallel to 
the growing incidence of obesity and type 2 diabetes mel-
litus (T2DM) [2]. In the recent years, important advances 
have been made in understanding the complex patho-
physiological mechanisms of MASLD. The development 
of this MASLD is multifactorial, with an increasing focus 
on the role of metabolic disorders such as hyperurice-
mia [3], insulin resistance [4] and hyperlipidemia [5]. 
The recent shift in nomenclature from non-alcoholic 
fatty liver disease (NAFLD) to MASLD better reflects the 
nature of these complex systemic disorders and cardio-
metabolic implications of this common liver disease [6]. 
Given the current lack of effective therapies specifically 
targeted towards MASLD patients, the early diagnosis 
and management of MASLD are of the utmost urgency.

In contemporary society, the prevalence of hyperurice-
mia is also on a rapid rise, fueled by high-purine diets 
and sugary beverages. Uric acid, the final oxidation prod-
uct of purine metabolism in humans, has been strongly 
linked to the development of metabolic syndrome [7–9], 
a cluster of conditions that include insulin resistance, 
dyslipidemia, hypertension, MASLD, gout, and cardio-
vascular diseases [10, 11]. Recent studies have extensively 
investigated the correlation between serum uric acid 
level and MASLD. A retrospective cohort study span-
ning 5 years suggested that serum uric acid was a predic-
tor for the development of NAFLD in apparently healthy 
subjects [12]. A subsequent retrospective cohort study 
further reported that hyperuricemia was significantly 
associated with risk of developing NAFLD in non-obese 
subjects, and this relationship was significantly inde-
pendent of clinical variables [13]. Based on three lon-
gitudinal analyses, a previous study also reported that 
hyperuricemia preceded the development of MASLD 
[14]. In addition, the study by Petta et  al. demonstrated 
hyperuricemia related with the severity of liver damage 
in patients with NAFLD [15], as evidenced by the study 
that revealed the increase in serum uric acid levels was 
associated with the corresponding to the progression of 
NAFLD severity using controlled attenuation parameter 
(CAP) [16]. Additionally, a meta-analysis of 11 studies 
revealed that risk of NAFLD was nearly doubled in the 
highest serum uric acid group compared to the lowest 

group [17], in line with previous meta-analysis study by 
Liu, showing a dose–response relationship of serum uric 
acid with incidence of NAFLD in two prospective studies 
[18]. The Polistena project, which involving 61 biopsied 
NAFLD patients also showed that serum uric acid levels 
were significantly higher in patients with severe fibro-
sis compared to those with mild fibrosis [19]. Further-
more, the relationship between uric acid and NAFLD, 
regardless of metabolic syndrome features, has been 
consistently observed [20, 21]. In conclusion, there is an 
inextricable relationship between uric acid and MASLD.

The proposed hypothesis suggests that inflammation 
and oxidative stress serve as the fundamental connection 
in the relationship between uric acid and MASLD. Firstly, 
it has been established that uric acid can trigger an 
inflammatory response in the liver that is partly depend-
ent on the NOD-, LRR- and pyrin domain-containing 
protein 3 (NLRP3) inflammasome [3]. This inflamma-
tory response leads to the activation of immune cells, 
such as macrophages, which then accumulate lipids and 
contribute to the development of fatty liver [22]. Sec-
ondly, hyperuricemia has been associated with insulin 
resistance, a key factor in the development of fatty liver 
disease. Uric acid may interfere with insulin signaling, 
leading to decreased insulin sensitivity and increased 
hepatic lipid accumulation [3, 23, 24]. Thirdly, elevated 
uric acid levels have been linked to increased oxidative 
stress in the liver [3]. Oxidative stress can damage hepat-
ocytes and contribute to the oxidation of lipoproteins, 
further contributing to the progression of fatty liver dis-
ease [25, 26]. Finally, uric acid may also disrupt the endo-
crine system, affecting the production and sensitivity of 
hormones related to lipid metabolism, thereby contribut-
ing to the development of fatty liver disease [27].

In general, individuals with high levels of uric acid are 
at a higher risk of developing MASLD. However, there 
are currently no effective early screening indicators spe-
cifically for this population. Therefore, it is essential to 
develop the new biomarkers or diagnostic tools to facili-
tate early detection and management of MASLD in indi-
viduals with high uric acid levels.

In our study, we investigated the potential biomark-
ers for detecting MASLD among patients with hyper-
uricemia and the role of Triglyceride Glucose-Waist 
Circumference (TyG_WC) in predicting metabolic dys-
function-associated steatotic liver disease among indi-
viduals with hyperuricemia.

Method
Study design and population
The datasets required for the analysis, spanning from 
the National Health and Nutrition Examination Survey 
(NHANES) conducted between 1999 and 2020, were 
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obtained from the official NHANES website. The survey 
was approved by the Research Ethics Review Board at 
the Centers for Disease Control and Prevention (CDC) 
in accordance with the Declaration of Helsinki, and writ-
ten informed consent was obtained from all adult par-
ticipants involved in the study. All data and details of 
methods of assessment are available on https:// www. cdc. 
gov/ nchs/ nhanes/ index. htm.

In this study, we conducted an analysis involving a total 
of 65332 adult participants drawn from the NHANES 
(1999–2020). To ensure the integrity of our research, we 
initially excluded 7300 participants due to their signifi-
cant alcohol consumption and another 1162 participants 
who had been diagnosed with hepatitis B/C infection. 
Among the remaining participants, 9096 had been diag-
nosed with hyperuricemia, while 3530 had a definitive 
status of MASLD (MASLD or non-MASLD). However, as 
a final step in our data preparation, we further excluded 
106 individuals due to the presence of severe and end-
stage renal failure, as well as dialysis patients, based on an 
estimated glomerular filtration rate (eGFR) of less than 
30 mL/min/1.73m2, resulting in a final study population 
of 3424 participants (Fig. 1).

Variables of interest
We obtained the information of socio-demographic 
characteristics, laboratory results, examination data, 
and lifestyle habits from the NHANES. The participants’ 
age, sex, race and the ratio of family income to poverty 
were downloaded from demographic data. The drinking 
consumption, smoking status, as well as the presence of 
T2DM, hypertension and cardiovascular disease (CVD) 
were obtained from the questionnaire data. The labora-
tory results, including alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), gamma-glutamyl 
transferase (GGT), glycohemoglobin, high-density lipo-
protein (HDL), total cholesterol (TC), uric acid, fasting 
triglycerides, fasting blood glucose and the status of hep-
atitis B/C, were retrieved from the laboratory data. The 
ALT, AST, GGT and fasting triglycerides were measured 
using an enzymatic rate method with the Beckman Syn-
chron LX20 and Beckman UniCel® DxC800 Synchron. 
The fasting blood glucose was measured by an enzymatic 
method in which glucose is converted to glucose-6-phos-
phate (G-6-P) by Roche C501 and Roche C311. The TC 
and HDL were measured using Roche Hitachi 717, Roche 
Hitachi 912 and Roche Modular P chemistry analyzer. 
The glycohemoglobin was analyzed using the hyphenated 
to liquid chromatography (HPLC) analytical column. The 
detailed description of the laboratory methods of each 
biochemical parameter used can be found at NHANES 
website.

The hepatic CAP, Body Mass Index (BMI), height and 
waist circumference were derived from the examina-
tion data. The Triglyceride Glucose (TyG) index was 
calculated as Ln (fasting triglycerides (mg/dL) × fasting 
blood glucose (mg/dL)/2) [28], while the Triglyceride 
Glucose_Body Mass Index (TyG_BMI) was calculated as 
TyG × BMI, TyG_WC was calculated as TyG × waist cir-
cumference and Triglyceride Glucose_Waist-to-Height 
Ratio (TyG_WHtR) was calculated as TyG × (waist cir-
cumference / height). The atherogenic index of plasma 
(AIP) was defined as log10 (triglycerides/high-density 
lipoprotein cholesterol) [29].

Ascertainment of MASLD and hyperuricemia
Participants from NHANES (1999–2020) were con-
sidered to have hepatic steatosis with US fatty liver 

Fig. 1 Flow chart of the study population from National Health and Nutrition Examination Survey

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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index (USFLI) score ≥ 30 [30]. We further validated our 
findings with another diagnostic criterion for defin-
ing hepatic steatosis using CAP values ≥ 248  dB/m [31] 
based on data from NHANES (2017–2020). Addition-
ally, participants were deemed to have cardiometabolic 
risk factors if they met any of the following criteria:1) 
The BMI ≥ 25 kg/m2 or waist circumference ≥ 94 cm for 
males or ≥ 80  cm for females; 2) The fasting blood glu-
cose ≥ 100 mg/dL or a glucose level ≥ 140 mg/dL after a 
2-h 75  g oral glucose tolerance test (OGTT) or haemo-
globin A1c (HbA1c) level ≥ 5.7% or diagnosed as a T2DM 
patient or received therapy for T2DM; 3) Diagnosis of 
hypertension or receiving therapy for hypertension; 4) 
Triglyceride ≥ 150  mg/dL; 5) HDL ≤ 40  mg/dL for males 
or ≤ 50 mg/dL for females or receiving therapy for lower-
ing lipids.

We finally excluded participants with iron overload or 
taking pharmacological agents associated with steatosis 
such as amiodarone, methotrexate or tamoxifen. If a par-
ticipant were considered as hepatic steatosis and got one 
of cardiometabolic risk factors, we considered he/she was 
a MASLD patient.

Hyperuricemia was defined as serum uric acid 
level ≥ 420  μmol/L (7  mg/dL) and ≥ 360  μmol/L (6  mg/
dL) in males and females, respectively [32]. The Beckman 
Synchron LX20 (NHANES, 1999–2007) and Beckman 
Coulter UniCel® DxC800 (NHANES 2008–2020) used a 
timed endpoint method to measure the concentration of 
uric acid in serum, plasma or urine. The detailed descrip-
tion of the laboratory methods used can be found at 
NHANES website.

Statistical analysis
The continuous variables were presented as the means 
(standard deviations [SDs]), while the categorical vari-
ables were expressed as numbers (percentages). The 
difference between two subgroups was compared by 
independent two-sample t test (continuous variables) 
and the chi-square test (categorical variables). The differ-
ence between the four groups according to quantiles of 
TyG_WC was compared by one-way analysis of variance 
(ANOVA) tests (continuous variables) and chi-square 
test (categorical variables). To select potential significant 
variables, we utilized Boruta’s algorithm, SHapley Addi-
tive exPlanations (SHAP) and random forests. Multivari-
able logistic regression models were employed to assess 
the odds ratio (OR) and 95% confidence interval (CI) 
for event occurrence. The P value < 0.05 was considered 
to indicate statistical significance. Receiver operating 
characteristic (ROC) curves and decision curve analysis 
(DCA) curves were used to evaluate the accuracy and 
clinical value of prediction model. Statistical analyses 
were conducted using R software (version 4.4.1).

Results
Baseline characteristics
Among the 3424 individuals with hyperuricemia, 1754 
participants did not have MASLD, while 1670 partici-
pants had MASLD. The basic characteristics were shown 
in Table 1. Compared to those without MASLD, patients 
with MASLD tended to be older in age, more frequently 
Non-Hispanic White, and married. They exhibited 
elevated levels of uric acid and liver enzymes such as 
ALT, AST, and GGT, and unfavorable metabolic profiles 
including lower HDL, higher AIP, TyG, BMI, TyG_BMI, 
TyG_WC and TyG_WHtR. Additionally, they also tended 
to consume less alcohol and have more cases of T2DM, 
cardiovascular diseases, hypertension, and thus receiv-
ing a broader range of diuretics treatments. There was no 
significant difference in the metabolic score for activity, 
the ratio of family income to poverty, smoking habits and 
eGFR.

Variable selection
We selected potential significant variables by using Boru-
ta’s algorithm, SHAP and random forests.

The Boruta’s algorithm is a powerful technique 
employed to identify the most crucial features within a 
given dataset. It achieves this by comparing the Z-value 
of each feature against the Z-value of its correspond-
ing "shadow feature." Variables with the highest feature 
importance scores are considered the best predictors 
of the dependent variable. The Boruta algorithm in our 
analysis suggested that TyG_WC was one of the most sig-
nificant variables in predicting MASLD risk (Fig. 2).

In order to visually explain the selected variables, we 
used SHAP to illustrate how these variables affect the risk 
of MASLD. Using the SHAP approach could illustrate 
the importance of each selected feature in the predic-
tion model. As shown in Fig. 3A, the bar plot displayed 
the mean absolute SHAP value for each feature across all 
predictions, serving as a measure of feature importance 
[33]. It displayed the top 15 most important features for 
the risk of MASLD. The beeswarm plot showed in Fig. 3B 
provided a global overview of SHAP values for selected 
features, with rows representing each feature ranked by 
the mean absolute SHAP value [33]. The bar plot and 
beeswarm plot both exhibited that TyG_WC served as 
the most important variable in predicting MASLD. In the 
SHAP force plot, each feature’s contribution was repre-
sented by a line, with the length of the line corresponding 
to the SHAP value of that feature. The TyG_WC’s con-
tribution in predicting MASLD was 0.292 (Fig.  3C). At 
last, the SHAP dependence plot helped in understanding 
the sensitivity of the model to variations in a particular 
feature and how it contributes to the overall prediction. 
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As demonstrated in the Fig. 3D, the prediction ability for 
MASLD increased as the increase of TyG_WC.

Finally, the employment of random forest feature selec-
tion marked a crucial juncture in our data preprocessing 
efforts. The Gini Index, accuracy, and imitation plot were 
used to evaluate and select the most relevant features 
for the given dataset (Fig.  4). The Gini Index measures 
the degree of purity of each node in the tree, while the 
accuracy and imitation plot help in visualizing the per-
formance of the model with different sets of features. 
By analyzing these metrics, the figure unambiguously 
revealed that TyG_WC emerged as the most significant 
and accurate variable. This insight not only simplified 
our analysis but also strengthened the model’s predictive 
capabilities, paving the way for more reliable and effec-
tive decision-making based on our data.

Association of TyG_WC with the odds ratio of MASLD
To further investigated the association of TyG_WC with 
the odds ratio of MASLD, we conducted the multivari-
able logistic regression utilizing restricted curve spline 
(RCS). The RCS revealed a positive association between 
TyG_WC and the odds ratio of MASLD as depicted 
in Fig.  5. After adjusting potential important variables 
including age, sex, race, smoking, drinking status, hyper-
tension, CVD and diuretics treatments when compared 
with lowest quantile of TyG_WC, the risk of MASLD for 
highest quantile was 137.96 times higher, and the posi-
tive associations were observed in both the crude model 
and other adjusted models (Table  2). To further vali-
dated our observations, we conducted subgroup analy-
ses. As shown in Supplementary Table  1, the positive 
associations between TyG_WC and risk of MASLD were 
appeared in each subgroup.

The role of the TyG_WC in predicting MASLD
The ROC was a graphical representation that effectively 
evaluates the performance of diagnostic tests. In our 
analysis, the area under the receiver operating charac-
teristic (AUROC) of TyG_WC in predicting MASLD 
among patients with hyperuricemia was 0.865 (Fig. 6A). 
This value indicated that the TyG_WC index had a high 
degree of accuracy in distinguishing between patients 
with and without MASLD with a sensitivity of 0.865. The 
cutoff point for the study population (NHANES, 1999–
2020) was at 901.087 for TyG_WC. To further validated 

Table 1 The Baseline characteristics of study population

Data are expressed as numbers (weighted proportions) for categorical variables 
and as weighted means (Standard Deviations, SDs) for continuous variables

AIP atherogenic index of plasma, ALT alanine aminotransferase, AST aspartate 
aminotransferase, BMI body mass index (calculated as weight in kilograms 
divided by height in meters squared), CVD cardiovascular disease, eGFR 
estimated glomerular filtration rate (according to Chronic Kidney Disease 

No MASLD
(N = 1754)

MASLD
(N = 1670)

P-Value

Age 49.74(0.60) 53.84(0.51) < 0.001

Sex 0.50

 Male 913(52.06%) 892(53.41%)

 Female 841(47.94%) 778(46.59%)

Race < 0.001

 Mexican American 63(3.59%) 101(6.03%)

 Other Hispanic 80(4.56%) 76(4.56%)

 Non-Hispanic White 1104(62.95%) 1256(75.22%)

 Non-Hispanic Black 308(17.58%) 117(7.03%)

 Other Race 199(11.33%) 120(7.16%)

Marital status < 0.001

 Married 980(55.87%) 1063(63.66%)

 Widowed 203(11.56%) 180(10.75%)

 Divorced 170(9.69%) 173(10.37%)

 Separated 29(1.64%) 23(1.38%)

 Never married 285(16.27%) 184(11.01%)

 Living with partner 87(4.96%) 47(2.84%)

Uric acid 433.98(1.57) 446.59(1.81) < 0.001

ALT (U/L) 23.21(0.37) 31.50(0.66) < 0.001

AST (U/L) 23.93(0.34) 27.65(0.51) < 0.001

GGT (U/L) 22.73(0.53) 37.10(1.08) < 0.001

TC (mg/dL) 197.10(1.53) 198.24(1.42) 0.59

HDL (mg/dL) 52.45(0.51) 44.08(0.40) < 0.001

Glycohemoglobin (%) 5.51(0.02) 5.95(0.03) < 0.001

AIP −0.02(0.01) 0.22(0.01) < 0.001

TyG 8.60(0.02) 9.13(0.02) < 0.001

TyG_WC 842.22(3.72) 1067.23(5.52) < 0.001

TyG_BMI 246.51(1.39) 328.14(2.34) < 0.001

TyG_WHtR 4.15(0.02) 5.56(0.04) < 0.001

BMI (Kg/m2) 28.64(0.15) 35.95(0.25) < 0.001

Waist circumference (cm) 97.78(0.34) 116.84(0.54) < 0.001

Smoking 0.44

< 100 990(56.44%) 971(58.12%)

≥ 100 764(43.56%) 699(41.88%)

Alcohol (g) 2.37(0.20) 1.29(0.17) < 0.001

CVD 230(13.10%) 271(16.24%) 0.02

T2DM 237(13.50%) 717(42.92%) < 0.001

Hypertension 855(48.74%) 1113(66.65%) < 0.001

PA_total_MET 3521.62(266.88) 3405.18(254.31) 0.71

PIR 2.98(0.05) 3.00(0.05) 0.75

eGFR (mL/min/1.73m2) 85.53(0.77) 83.51(0.74) 0.05

Diuretics < 0.001

 Yes 383(21.86%) 572(34.28%)

 No 669(38.12%) 404(24.21%)

 Other 702(40.03%) 693(41.51%)

Epidemiology Collaboration 2009, CKD-EPI 2009), GGT  gamma-glutamyl 
transferase, HDL high-density lipoprotein, PA_total_MET metabolic score for total 
physical activity, PIR ratio of family income to poverty, TC total cholesterol, TyG 
Triglyceride Glucose, TyG_BMI TyG × BMI, TyG_WC TyG × waist circumference, 
TyG_WHtR, TyG × (waist circumference to height ratio), T2DM type 2 diabetes 
mellitus

Table 1 (continued)
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our findings, we adopted another diagnostic criterion for 
defining hepatic steatosis using CAP values ≥ 248  dB/m 
for participants from NHANES (2017–2020). As shown 
in Fig.  6B, the ROC of TyG_WC in predicting MASLD 
was 0.814, which also signified a high level of accuracy 
in the prediction. Additionally, we validated the predic-
tive performance of the TyG_WC index on the popula-
tion with NAFLD with two distinct kinds of methods for 
the definition of NAFLD. The first definition was based 
on USFLI ≥ 30 (Supplementary Fig. 1), while the second 
definition was based on fatty liver index (FLI) ≥ 60 (Sup-
plementary Fig. 2). As indicated in Supplementary Fig. 3, 
the TyG_WC index also demonstrated a robust predic-
tive capacity in patients with NAFLD, with an AUROC of 
0.868 for the first definition and an AUROC of 0.969 for 
the second definition.

We further plotted the DCA curve to evaluate the clini-
cal usefulness of TyG_WC in predicting MASLD among 
patients with hyperuricemia. It helped to determine the 
clinical net benefit of using the model to make decisions 
about patient treatment compared to the standard of 
care. A well-performing DCA curve indicated that using 
a predictive model can lead to improved patient out-
comes and resource allocation by making more informed 
treatment decisions based on individual patient risk. As 
indicated in Fig. 7, the predictive strategy incorporating 

TyG_WC notably enhanced the clinical model compared 
with other strategies that involved other potentially sig-
nificant variables but did not include TyG_WC, with 
threshold probabilities spanning from approximately 0% 
to 100%, resulting in a significant improvement of the 
clinical net benefit.

Discussion
The NHANES database provided a large and representa-
tive sample of the US population, allowing us firstly 
to investigate the potential biomarkers for detecting 
MASLD in patients with hyperuricemia in a nation-
ally representative manner. Based on our analysis, it was 
observed that TyG_WC was one of the most significant 
variables in predicting MASLD risk among individu-
als with hyperuricemia, with an AUROC of 0.865. There 
was a positive association between TyG_WC and the 
odds ratio of MASLD in both the crude model and other 
adjusted models. The predictive strategy incorporat-
ing TyG_WC notably enhanced the clinical model, with 
threshold probabilities spanning from approximately 0% 
to 100%, resulting in a significant improvement of the net 
benefit.

Currently, liver elasticity measurement is a valuable 
tool for assessing fatty liver disease, however its accu-
racy can be affected by obesity, body habitus [34] and 

Fig. 2 Feature selection based on the Boruta’s algorithm. The horizontal axis represents the name of each variable, and the vertical axis indicates 
the Z value of each variable. The box plot visually depicts the Z value distribution of each variable during model calculation process. The green 
boxes signify important variables, the yellow boxes indicate tendensive variables and red boxes signify rejected variables. AIP, atherogenic index 
of plasma; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index (calculated as weight in kilograms divided 
by height in meters squared); CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate (according to Chronic Kidney Disease 
Epidemiology Collaboration 2009, CKD-EPI 2009); GGT, gamma-glutamyl transferase; GlycoHB, glycohemoglobin; HDL, high-density lipoprotein; PA_
total_MET, metabolic score for total physical activity; PIR, ratio of family income to poverty; TC, total cholesterol; TyG, Triglyceride Glucose; TyG_BMI, 
TyG × BMI; TyG_WC, TyG × waist circumference; TyG_WHtR, TyG × (waist circumference to height ratio); T2DM, type 2 diabetes mellitus
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operator’s experience. Additionally, availability of the 
device may be limited in developing countries or rural 
areas. The development of accessible, cost-effective diag-
nostic biomarkers for the early and effective detection 
of MASLD is essential to implement preventive meas-
ures and mitigate the impact of the disease in patients 
with hyperuricemia. In this study, we explored the diag-
nostic efficacy of potential biomarkers for MASLD in 
American adults, finding that the TyG_WC exhibited the 
highest diagnostic performance by using Boruta’s algo-
rithm, SHAP model and random forest. There are several 
strengths by using TyG_WC as a predictor of MASLD. 
Firstly, by identifying hyperuricemic patients with a high 

risk of MASLD based on their TyG_WC score, clinicians 
can initiate early interventions to prevent or slow down 
the progression of the disease. Secondly, the TyG_WC 
index provides a personalized risk assessment tool that 
can guide tailored treatment plans for each patient, con-
sidering their unique metabolic profile. Finally, the sim-
plicity and ease of calculating the TyG_WC index make 
it a cost-effective screening tool for large-scale screen-
ing programs aimed at detecting MASLD among hyper-
uricemic populations. In general, the TyG_WC index is 
a valuable tool for early detection and intervention in 
the management of MASLD among individuals with 
hyperuricemia.

Fig. 3 Feature selection based on the SHapley Additive exPlanations (SHAP) method A SHAP bar plot. This bar plot displays the mean absolute 
SHAP value for each feature across all predictions. The height of each bar represents the average impact of a specific feature on the model’s 
predictions. This allows for a comparative analysis of the influence of different features on the model’s performance. B SHAP beeswarm plot. This 
plot provided a global overview of SHAP values for selected features, with rows representing each feature ranked by the mean absolute SHAP value. 
C SHAP force plot. Each feature’s contribution was represented by a line, with the length of the line corresponding to the SHAP value of that feature. 
D SHAP dependence plot. This plot shows the relationship between a specific feature and the model’s output, highlighting how changes 
in the feature value affect the prediction. AIP, atherogenic index of plasma; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, 
body mass index (calculated as weight in kilograms divided by height in meters squared); CVD, cardiovascular disease; eGFR, estimated glomerular 
filtration rate (according to Chronic Kidney Disease Epidemiology Collaboration 2009, CKD-EPI 2009); GGT, gamma-glutamyl transferase; GlycoHB, 
glycohemoglobin; HDL, high-density lipoprotein; PA_total_MET, metabolic score for total physical activity; PIR, ratio of family income to poverty; TC, 
total cholesterol; TyG, Triglyceride Glucose; TyG_BMI, TyG × BMI; TyG_WC, TyG × waist circumference; TyG_WHtR, TyG × (waist circumference to height 
ratio); T2DM, type 2 diabetes mellitus
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The TyG_WC index combines two components: the 
TyG index, a surrogate measure of insulin resistance [35, 
36], and waist circumference as a proxy for abdominal 
obesity. High levels of insulin resistance and abdominal 
obesity are both known to be associated with increased 
risk of MASLD [37, 38]. In a Mexican cohort study, the 

diagnostic performance of various TyG indices in pre-
dicting MASLD was evaluated. Among these indices, the 
TyG_WC demonstrated good diagnostic performance, 
with an AUROC value of 0.84 [39]. This suggests that 
the TyG_WC index has a high accuracy in predicting 
MASLD, making it a promising tool for early detection 

Fig. 4 Feature selection based on the random forests. The Gini Index, accuracy, and imitation plot are used to evaluate and select the most 
relevant features for the given dataset. The figure demonstrates how the algorithm assesses the importance of individual features by calculating 
their contribution to the decision trees within the forest. The Gini Index measures the degree of purity of each node in the tree, while the accuracy 
and imitation plot help in visualizing the performance of the model with different sets of features. By analyzing these metrics, the figure shows 
that certain features are more important than others in predicting the target variable, thereby providing a comprehensive understanding 
of the underlying data patterns. AIP, atherogenic index of plasma; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body 
mass index (calculated as weight in kilograms divided by height in meters squared); CVD, cardiovascular disease; eGFR, estimated glomerular 
filtration rate (according to Chronic Kidney Disease Epidemiology Collaboration 2009, CKD-EPI 2009); GGT, gamma-glutamyl transferase; GlycoHB, 
glycohemoglobin; HDL, high-density lipoprotein; PA_total_MET, metabolic score for total physical activity; PIR, ratio of family income to poverty; TC, 
total cholesterol; TyG, Triglyceride Glucose; TyG_BMI, TyG × BMI; TyG_WC, TyG × waist circumference; TyG_WHtR, TyG × (waist circumference to height 
ratio); T2DM, type 2 diabetes mellitus

Fig. 5 Association of Triglyceride Glucose-Waist Circumference (TyG_WC) with the odds ratio of metabolic dysfunction-associated steatotic liver 
disease (MASLD). Multivariable Logistic regression models were employed to assess the odds ratio (OR) and 95% confidence interval (CI) for event 
occurrence. Odds ratio of MASLD was modeled as restricted cubic splines. A adjusted by age, sex and race; B adjusted by age, sex, race, smoking 
and drinking status; C adjusted by age, sex, race, smoking and drinking status, diuretics treatments, hypertension and cardiovascular disease
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and management of this condition. A population-based 
cohort study conducted in a Japanese hospital has dem-
onstrated a significant association between the TyG 
index and the incidence of NAFLD [40]. A cross-sec-
tional study from NHANES has reported that Homeosta-
sis Model Assessment of Insulin Resistance (HOMA-IR) 
and TyG_WC are core factors in predicting MASLD risk 
[41]. Another cross-sectional study has revealed that the 
TyG_WC showed considerable predictive ability with 
AUROC of 0.752 among Chinese T2DM patients [42]. 
So far, Peng H. et al. have reported the highest diagnos-
tic performance of TyG_WC for metabolic dysfunction-
associated fatty liver disease (MAFLD), achieving an 
AUROC of 0.90 in a population in the United States [43]. 
These results aligned with our findings, where the TyG_
WC emerged as the most accurate predictor for MASLD 
among patients with hyperuricemia. Furthermore, our 

study proposed cutoff points for study population at 
901.087 for TyG_WC. This index provides a compre-
hensive assessment of an individual’s risk factors for 
MASLD, taking into account not only their body size but 
also other contributing factors such as insulin resistance, 
glucose metabolism, and other metabolic abnormalities. 
By using the TyG_WC index, healthcare professionals 
can identify patients who may be at risk of developing 
MASLD early on and implement appropriate interven-
tions to prevent or manage the condition. This can lead 
to improved health outcomes and reduced health care 
costs in the long run.

In conclusion, the TyG_WC index was a promising 
biomarker for predicting the presence of MASLD among 
patients with hyperuricemia. Its integration into clinical 
practice can facilitate early detection, personalized treat-
ment planning, and cost-effective management strategies 

Table 2 Association of quantiles of TyG_WC with odds ratio of metabolic dysfunction-associated steatotic liver disease

OR odds ratio; Q, quantile

Crude Model: unadjusted;

Model 1: adjusted by age, sex and race;

Model 2: adjusted by age, sex, race, smoking and drinking status;

Model 3: adjusted by age, sex, race, smoking and drinking status, diuretics treatments; hypertension and cardiovascular disease

Data are expressed as numbers (weighted proportions) for categorical variables and as weighted means (Standard Deviation, SD) for continuous variables

Crude Model Model 1 Model 2 Model 3

OR (95%CI) P OR (95% CI) P OR (95%CI) P OR (95%CI) P

Q1 1 1 1 1

Q2 5.45(3.71,8.00) < 0.001 4.87(3.30,7.20) < 0.001 4.64(2.99,7.19) < 0.001 5.15(3.17, 8.38) < 0.001

Q3 19.01(13.17,27.42) < 0.001 17.39(12.07,25.07) < 0.001 18.29(12.37,27.04) < 0.001 19.28(12.48, 29.77) < 0.001

Q4 143.19(93.26,219.84) < 0.001 138.12(89.59,212.94) < 0.001 143.93(90.90, 227.90) < 0.001 137.96(82.22, 231.48) < 0.001

P for trend < 0.001 < 0.001 < 0.001 < 0.001

Fig. 6 The Receiver Operating Characteristic (ROC) curve. A The ROC curve for participants from National Health and Nutrition Examination Survey 
(NHANES, 1999–2020); B The ROC curve for participants from NHANES (2017–2020)
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for this growing health concern. Future research should 
focus on elucidating the underlying mechanisms and val-
idating the TyG_WC index across diverse populations to 
further solidify its role as a diagnostic tool for MASLD.

Limitations and future directions
While the TyG_WC index showed promising results in 
predicting MASLD among patients with hyperurice-
mia, several limitations needed to be considered in our 
analysis. Cross-sectional studies cannot establish causal-
ity thus longitudinal studies are needed to confirm the 
temporal relationship between high TyG_WC scores and 
MASLD development. The TyG_WC index may not fully 
capture all metabolic factors contributing to MASLD. 
Therefore, it should be used in conjunction with other 
diagnostic tools and biomarkers. The generalizability 
of findings from studies conducted in specific popula-
tions (e.g., Asian or European populations) needs to be 
validated across different ethnicities and geographical 
regions.

Conclusions
The study highlighted the significant role of TyG_WC in 
predicting the risk of MASLD among individuals with 
hyperuricemia. Future research should focus on elucidat-
ing the pathophysiological mechanisms linking TyG_WC 
to MASLD in this population and exploring targeted 
interventions to reduce risk, particularly in hyperurice-
mia patients with elevated TyG_WC. Such investigations 
could inform evidence-based prevention and manage-
ment strategies for MASLD in high-risk groups, thereby 
improving clinical outcomes and quality of life.
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