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Abstract
Objective  This study aims to create a reliable framework for grading esophageal cancer. The framework combines 
feature extraction, deep learning with attention mechanisms, and radiomics to ensure accuracy, interpretability, and 
practical use in tumor analysis.

Materials and methods  This retrospective study used data from 2,560 esophageal cancer patients across multiple 
clinical centers, collected from 2018 to 2023. The dataset included CT scan images and clinical information, 
representing a variety of cancer grades and types. Standardized CT imaging protocols were followed, and 
experienced radiologists manually segmented the tumor regions. Only high-quality data were used in the study. A 
total of 215 radiomic features were extracted using the SERA platform. The study used two deep learning models—
DenseNet121 and EfficientNet-B0—enhanced with attention mechanisms to improve accuracy. A combined 
classification approach used both radiomic and deep learning features, and machine learning models like Random 
Forest, XGBoost, and CatBoost were applied. These models were validated with strict training and testing procedures 
to ensure effective cancer grading.

Results  This study analyzed the reliability and performance of radiomic and deep learning features for grading 
esophageal cancer. Radiomic features were classified into four reliability levels based on their ICC (Intraclass 
Correlation) values. Most of the features had excellent (ICC > 0.90) or good (0.75 < ICC ≤ 0.90) reliability. Deep learning 
features extracted from DenseNet121 and EfficientNet-B0 were also categorized, and some of them showed poor 
reliability. The machine learning models, including XGBoost and CatBoost, were tested for their ability to grade 
cancer. XGBoost with Recursive Feature Elimination (RFE) gave the best results for radiomic features, with an AUC 
(Area Under the Curve) of 91.36%. For deep learning features, XGBoost with Principal Component Analysis (PCA) 
gave the best results using DenseNet121, while CatBoost with RFE performed best with EfficientNet-B0, achieving 
an AUC of 94.20%. Combining radiomic and deep features led to significant improvements, with XGBoost achieving 
the highest AUC of 96.70%, accuracy of 96.71%, and sensitivity of 95.44%. The combination of both DenseNet121 
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Introduction
Esophageal cancer remains a major challenge in oncol-
ogy, with high mortality rates and late-stage diagnosis. 
Accurate cancer grading is essential for creating person-
alized treatment plans and improving patient outcomes 
[1–4]. However, traditional diagnostic methods often suf-
fer from subjective interpretation and inconsistencies in 
feature extraction. To overcome these issues, this study 
uses advanced machine learning techniques, including 
radiomics and deep learning, to develop a comprehen-
sive framework for accurate and reproducible esophageal 
cancer grading [5–7].

Early and precise grading of esophageal cancer is cru-
cial for optimizing treatment planning and improving 
patient prognosis. Higher-grade tumors are often more 
aggressive, have a greater likelihood of metastasis, and 
are associated with poorer survival rates. By accurately 
classifying tumors at an early stage, clinicians can develop 
personalized treatment strategies, ensuring that surgery, 
chemotherapy, and radiotherapy are used effectively to 
improve patient outcomes. Additionally, early grading 
facilitates better risk assessment and continuous moni-
toring, allowing for timely interventions that may prevent 
disease progression and enhance long-term survival.

Esophageal cancer is anatomically categorized into 
three regions based on tumor location. The upper esoph-
agus extends from the cricoid cartilage to the thoracic 
inlet, the middle esophagus is located between the tho-
racic inlet and the tracheal bifurcation, and the lower 
esophagus extends from the tracheal bifurcation to the 
gastroesophageal junction [2, 8]. These divisions are clin-
ically significant, as tumor location influences surgical 
approaches, lymph node metastasis patterns, and overall 
treatment strategies. For instance, tumors in the upper 
esophagus may require extensive surgical resection, while 
those in the lower esophagus often involve gastroesopha-
geal junction management. This study includes tumors 
from all three anatomical regions to ensure a compre-
hensive evaluation, making the findings applicable to a 
diverse range of clinical cases.

Radiomics offers a reliable method for extracting 
quantitative features from medical images, such as CT 
scans [9–12]. These features capture important tumor 
characteristics, like shape, texture, and intensity, which 

are strongly linked to clinical outcomes [13–16]. While 
radiomics shows promise in oncology, it can be affected 
by variability in manually segmented regions of interest 
(ROIs) [17–20]. To address this, the study uses a multi-
segmentation strategy, where each tumor is segmented 
three times to ensure reproducibility and reliability of 
the features [21–24]. This approach reduces variability in 
ROI delineation, improving the robustness and validity of 
the radiomic analysis [25].

Deep learning, particularly convolutional neural net-
works (CNNs), has revolutionized medical imaging by 
automating feature extraction and enabling end-to-end 
learning [14, 26–29]. In this study, advanced models like 
DenseNet121 and EfficientNet-B0 are used for their abil-
ity to extract complex, high-dimensional features from 
imaging data. These models are effective at capturing 
intricate patterns necessary for accurate esophageal can-
cer grading. Attention mechanisms further enhance the 
models by focusing on diagnostically important areas 
within the tumor, allowing for precise analysis of subtle 
textural and morphological variations critical for grad-
ing [30–32]. Unlike traditional radiomics, which relies on 
predefined features, deep learning learns discriminative 
patterns directly from the data, eliminating the need for 
manual feature selection [11, 33]. Moreover, deep learn-
ing models can capture both low-level details, such as 
edges and textures, and high-level semantic information, 
such as tumor morphology, providing a complete view of 
the imaging data. Attention mechanisms improve inter-
pretability and accuracy by prioritizing relevant areas.

While deep learning features offer adaptive, high-
dimensional insights, radiomic features provide clini-
cally interpretable markers that are often directly related 
to biological processes. This study combines these two 
approaches to capitalize on their strengths. Radiomic 
features offer reliable, interpretable metrics, while deep 
features capture complex, non-linear patterns [8, 34, 35]. 
Integrating both enhances diagnostic accuracy and gives 
a more comprehensive view of tumor characteristics.

A key focus of this study is reproducibility in feature 
extraction. Variability in segmentation is a common issue 
in medical imaging, especially in radiomics. To tackle 
this, each tumor was segmented three times by trained 
annotators using consistent protocols, and features were 

and EfficientNet-B0 models in ensemble models achieved the best overall performance, with an AUC of 95.14% and 
accuracy of 94.88%.

Conclusions  This study improves esophageal cancer grading by combining radiomics and deep learning. It 
enhances diagnostic accuracy, reproducibility, and interpretability, while also helping in personalized treatment 
planning through better tumor characterization.

Clinical trial number  Not applicable.

Keywords  Esophageal cancer grading, CT imaging, Radiomics, Deep learning, Reproducibility
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extracted from each segmentation [36–38]. This multi-
segmentation strategy ensures the reproducibility of 
both radiomic and deep learning-based features. The 
consistency of features across repeated segmentations 
was carefully evaluated to confirm their reliability and 
stability.

This study introduces a new framework for esophageal 
cancer grading that integrates radiomic and deep learn-
ing features to address the limitations of existing diagnos-
tic methods. The framework uses deep learning models 
in two ways: as end-to-end pipelines for direct cancer 
grading and as feature extractors, where deep features 
are extracted from intermediate layers and used in tradi-
tional machine learning classifiers to enhance interpret-
ability and performance. This dual approach maximizes 
the potential of deep learning-derived features. Key con-
tributions of this study include:

1.	 Reproducible Feature Extraction: A multi-
segmentation strategy ensures the reliability of both 
radiomic and deep learning features. By segmenting 
tumors three times and extracting features from 
each, variability is minimized, leading to more 
consistent and reproducible results.

2.	 Attention-Enhanced Deep Learning: DenseNet121 
and EfficientNet-B0 models, enhanced with attention 
mechanisms, focus on diagnostically critical 
regions. These mechanisms improve the models’ 
interpretability and accuracy by prioritizing relevant 
imaging details.

3.	 Feature Integration: Radiomic features, which offer 
clinically useful insights, are combined with high-
dimensional deep features. This integration leverages 
the strengths of both approaches, resulting in a more 
robust and comprehensive diagnostic framework.

4.	 Comprehensive Validation: The framework was 
rigorously validated on a large, diverse dataset of 
esophageal cancer cases. Key performance metrics, 
such as accuracy, sensitivity, and reproducibility, 
were evaluated and compared with current methods 
to ensure clinical reliability and applicability.

Materials and methods
Study design and dataset
This retrospective study used data from 2,560 patients 
diagnosed with esophageal cancer, collected from mul-
tiple clinical centers between 2018 and 2023. The dataset 
included CT imaging data along with clinical and patho-
logical information, ensuring a comprehensive repre-
sentation of the patient population. Cancer grades were 
distributed as follows: 384 patients (15%) as Grade I, 896 
patients (35%) as Grade II, 640 patients (25%) as Grade 
III, and 640 patients (25%) as Grade IV. CT images were 
acquired using standardized multi-detector protocols 

with consistent parameters across centers, such as slice 
thickness (3–5  mm), voltage (120–140 kVp), and cur-
rent (100–300  mA). Imaging data were preprocessed to 
ensure uniformity, including resolution normalization, 
alignment, and removal of artifacts caused by varia-
tions in acquisition protocols. All patient data were ano-
nymized to protect confidentiality. The accompanying 
metadata included demographic details, clinical stag-
ing, tumor size, and histological subtype. The dataset 
was carefully curated to ensure balanced representation 
across cancer grades and tumor characteristics, provid-
ing a solid foundation for further analysis.

Inclusion and exclusion criteria
Strict inclusion and exclusion criteria were applied to 
ensure dataset integrity and relevance for esophageal 
cancer grading. Only patients with a confirmed histo-
pathological diagnosis, contrast-enhanced CT scans, and 
complete clinical data were included to maintain diag-
nostic accuracy and consistency. Exclusion criteria elimi-
nated cases with poor-quality imaging, prior oncological 
treatments before imaging, multiple primary cancers, or 
missing critical data, ensuring a high-quality and reliable 
dataset. A detailed flowchart of these criteria is provided 
in the supplementary materials. Figure  1 illustrates the 
stringent inclusion and exclusion criteria applied during 
the selection of patients for the esophageal cancer data-
set. A total of 3,459 initial patient records were reviewed. 
After applying strict inclusion and exclusion criteria, 
2,560 patients were included in the final dataset. The 
inclusion process involved selecting patients with a con-
firmed histopathological diagnosis, contrast-enhanced 
CT scans, complete imaging metadata, clear tumor visu-
alization, and full clinical and demographic information. 
Concurrently, 899 patients were excluded for reasons 
including incomplete or poor-quality CT scans (n = 119), 
prior therapeutic interventions (n = 125), presence of 
multiple primary cancers (n = 129), severe comorbidi-
ties (n = 154), and missing critical clinical or pathologi-
cal data (n = 372). The final dataset was randomly divided 
into three cohorts: 1,792 patients (70%) for training, 384 
patients (15%) for validation, and 384 patients (15%) for 
testing, ensuring balanced grade distribution across sub-
sets and preserving statistical integrity for model devel-
opment and evaluation.

To better align with the binary classification task and 
enhance clinical interpretability, we stratified patients 
into low-grade (Grades I–II) and high-grade (Grades 
III–IV) categories. Table  1 presents the clinical and 
demographic characteristics of patients across training, 
validation, and testing cohorts, disaggregated by grade 
classification.

The proposed framework combines radiomic and deep 
learning features to achieve accurate esophageal cancer 
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Fig. 1  Inclusion and exclusion criteria for esophageal cancer dataset
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grading. It follows a systematic approach that begins with 
tumor segmentation and radiomic feature extraction, fol-
lowed by the integration of deep learning models with 
attention mechanisms. The framework undergoes com-
prehensive validation using a large dataset to ensure its 
clinical applicability and reproducibility in cancer diag-
nostics. Figure 2 illustrates the entire process, from data 
collection to final model evaluation, emphasizing the key 
steps involved.

Tumor segmentation and Multi-Segmentation strategy
Accurate tumor segmentation is a critical step in image 
preprocessing, directly impacting the quality and reli-
ability of feature extraction in both radiomics and deep 
learning workflows. In this study, tumor segmentation 
was performed using contrast-enhanced CT scans to 
delineate the regions of interest (ROIs) corresponding to 
the primary tumor. A manual segmentation protocol was 
followed to ensure precise and standardized delineation 
across the imaging dataset.

To improve robustness and reproducibility, a multi-seg-
mentation strategy was used. Each tumor was segmented 
independently three times by experienced radiologists 
with at least five years of expertise in oncologic imaging. 
These segmentations were spaced seven days apart to 
reduce the likelihood of memory bias and ensure inde-
pendent evaluations. This approach minimized variability 
and potential biases introduced by individual annotators, 
achieving a high degree of consistency in the dataset. All 
segmentation tasks were carried out using 3D Slicer, a 
widely recognized tool in medical imaging, to ensure pre-
cision and maintain uniformity in the workflow.

After segmentation, post-processing techniques 
were applied to standardize the segmented ROIs. This 
included smoothing the tumor boundaries to remove 
irregularities, normalizing pixel intensities to account 
for variations in CT acquisition settings, and aligning the 

segmented slices across different imaging planes. These 
procedures ensured that the tumor ROIs were not only 
accurate but also consistent across the dataset, making 
them suitable for downstream radiomic and deep learn-
ing analyses. By implementing a multi-segmentation 
strategy and rigorous post-processing, this study ensured 
that tumor segmentation was both reproducible and reli-
able. These high-quality segmentations formed the foun-
dation for extracting robust imaging features, enhancing 
the validity of the analysis and ensuring the overall 
robustness of the dataset.

Radiomic feature extraction
A total of 215 quantitative radiomic features were 
extracted from each tumor’s CT images using the Stan-
dardized Environment for Radiomics Analysis (SERA) 
software (https://visera.ca/), which follows the guidelines 
of the Image Biomarker Standardization Initiative (IBSI). 
These features included 79 first-order features, captur-
ing intensity and morphological characteristics, and 136 
higher-order 3D features, describing texture and spatial 
relationships. Feature extraction followed standardized 
preprocessing steps to ensure uniform voxel spacing 
and intensity normalization. To optimize model perfor-
mance, features with low variance or high correlation 
were excluded. A detailed breakdown of radiomic feature 
types is provided in the supplementary materials.

To ensure consistency and accuracy in radiomic and 
deep learning feature extraction, several preprocessing 
steps were applied to the CT images. First, tumor bound-
ary smoothing was performed using a Gaussian filter to 
reduce noise while preserving the structural integrity 
of the tumor. Next, voxel intensity normalization was 
applied using a z-score transformation to standardize 
intensity values across different scans and imaging cen-
ters. To correct for variations in acquisition settings, slice 
alignment and resampling were conducted to achieve 

Table 1  Clinical and demographic characteristics stratified by grade and cohort
Characteristic Training Cohort 

(n = 1792)
Validation Cohort 
(n = 384)

Testing Cohort 
(n = 384)

Total (n = 2560) p-value 
(High vs. 
Low Grade)

Low (n = 897) High (n = 895) Low (n = 192) High (n = 192) Low 
(n = 192)

Age (mean ± SD, years) 63.4 ± 8.3 67.3 ± 9.4 63.2 ± 8.2 67.8 ± 9.1 63.9 ± 8.7
Gender (% male) 60% 71% 59% 69% 61%
Tumor Location (%)
- Upper Esophagus 11% 6% 12% 5% 11%
- Middle Esophagus 48% 52% 49% 51% 47%
- Lower Esophagus 41% 42% 39% 44% 42%
Histological Subtype (%)
- Squamous Cell Carcinoma 74% 61% 76% 59% 75%
- Adenocarcinoma 26% 39% 24% 41% 25%
Tumor Size (cm ± SD) 3.8 ± 0.9 5.8 ± 1.2 3.7 ± 0.8 5.9 ± 1.3 3.9 ± 0.9
Note: Low-grade = Grades I & II; High-grade = Grades III & IV

https://visera.ca/
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a uniform spatial resolution of 1  mm × 1  mm × 1  mm. 
Additionally, artifact removal was performed by applying 
a semi-automated segmentation approach to mask non-
tumor regions and minimize background noise. These 
preprocessing steps ensured that imaging data were har-
monized across patients, improving feature reproducibil-
ity and model performance.

Reproducibility assessment of radiomic features
The reproducibility of radiomic features was assessed 
using the Intraclass Correlation Coefficient (ICC) with 
carefully selected parameters, including a two-way ran-
dom-effects model, absolute agreement, and multiple 
raters or measurements. ICC is widely recognized as a 
robust statistical index for evaluating agreement between 
continuous variables, particularly in studies that require 

Fig. 2  Integrated Framework for Esophageal Cancer Grading Using Radiomics and Deep Learning
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reproducible measurements. This index ranges from 0 to 
1, providing a quantitative measure of reliability.

The reliability of radiomic features was assessed using 
the ICC, following a two-way random-effects model 
with absolute agreement to evaluate consistency across 
multiple segmentations. Features were categorized 
based on widely accepted thresholds: excellent reli-
ability (ICC > 0.90), good reliability (0.75 < ICC ≤ 0.90), 
moderate reliability (0.50 < ICC ≤ 0.75), and poor reli-
ability (ICC ≤ 0.50). These thresholds were selected in 
accordance with the guidelines of the IBSI and previous 
radiomics studies to ensure standardization and com-
parability with existing literature. Only features with 
excellent or good reliability were retained for further 
analysis to ensure robust and reproducible results. ICC 
computations were performed using a Python-based in-
house code developed for this study, ensuring precision 
and consistency in statistical assessments. This process 
ensured that only highly reliable features were selected 
for subsequent modeling and analysis, enhancing the 
robustness of the study’s findings.

Deep learning framework
Model architectures: DenseNet121 and EfficientNet-B0
In this study, two advanced CNN architectures, 
DenseNet121 and EfficientNet-B0, were used to analyze 
CT imaging data. DenseNet121 employs densely con-
nected layers, where each layer is directly connected to 
every other layer in a feed-forward fashion. This architec-
ture enables feature reuse, reduces the number of param-
eters, and enhances gradient flow, making it particularly 
effective for medical imaging tasks with limited datasets. 
EfficientNet-B0, on the other hand, is based on a com-
pound scaling method that uniformly scales the network 
depth, width, and resolution, achieving state-of-the-art 
accuracy with optimized computational efficiency. These 
architectures were selected for their complementary 
strengths: DenseNet121 for its robust feature propaga-
tion and EfficientNet-B0 for its efficient use of model 
capacity and scalability. Both models were initialized with 
pre-trained weights from ImageNet to leverage transfer 
learning and accelerate convergence.

Attention mechanisms implementation
To improve model performance and focus on impor-
tant areas within the tumor, attention mechanisms 
were added to the deep learning framework. Specifi-
cally, spatial and channel attention modules were used. 
Spatial attention mechanisms highlight key areas in the 
CT images, such as the tumor’s core and edges, which 
are important for diagnosis. Channel attention mecha-
nisms adjust the feature maps by giving more weight to 
the most relevant channels in the convolutional layers, 
ensuring that critical features stand out. By integrating 

these attention modules, the accuracy of esophageal can-
cer grading was improved, and the models became more 
interpretable by focusing on the tumor-relevant areas in 
the imaging data.

Deep feature extraction
In addition to using DenseNet121 and EfficientNet-B0 as 
end-to-end classifiers, deep features were extracted using 
Global Average Pooling (Fig. 3). These features were then 
used as inputs for traditional machine learning classifiers, 
complementing the end-to-end approach.

The deep feature extraction process followed these 
steps:

1.	 CT images were preprocessed and input into the 
pre-trained DenseNet121 and EfficientNet-B0 
models.

2.	 Feature maps from intermediate layers were 
extracted, capturing both low-level features (e.g., 
edges, textures) and high-level semantic features 
(e.g., tumor shape and spatial relationships).

3.	 These features were flattened into feature vectors.
4.	 The feature vectors were fed into machine learning 

classifiers, creating a hybrid approach that combines 
deep learning with traditional methods.

This dual approach—end-to-end deep learning and deep 
feature extraction—ensured flexibility, improved inter-
pretability, and maximized diagnostic performance. The 
addition of attention mechanisms further enhanced these 
models, allowing the system to focus on the most diag-
nostically relevant parts of the imaging data.

Feature integration and classification framework
To enhance diagnostic performance, the proposed 
framework integrates radiomic features with deep 
learning-derived features, combining their comple-
mentary strengths. Radiomic features, known for their 
clinical interpretability, capture tumor morphology, 
intensity, and texture, while deep features extracted from 
DenseNet121 and EfficientNet-B0 models capture com-
plex hierarchical and non-linear patterns. This integra-
tion provides a comprehensive representation of tumor 
characteristics, combining domain-specific knowledge 
with data-driven insights.

Given the high dimensionality of the integrated feature 
set, dimensionality reduction and feature selection tech-
niques were used to improve computational efficiency 
and reduce the risk of overfitting. Dimensionality reduc-
tion was performed using Recursive Feature Elimination 
(RFE) and Principal Component Analysis (PCA). RFE 
was employed to iteratively remove non-contributory 
features while preserving predictive accuracy. PCA trans-
formed high-dimensional radiomic and deep learning 
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features into orthogonal components, capturing the max-
imum variance in the dataset. These methods were cho-
sen for their ability to improve classification performance 
while mitigating overfitting. Although alternative meth-
ods such as Lasso regression and mutual information-
based selection exist, RFE and PCA provided optimal 
feature selection for this study’s dataset characteristics.

The classification framework employed three advanced 
machine learning models: Random Forest, XGBoost, 
and CatBoost. Random Forest, an ensemble learning 
method based on decision trees, is known for its ability 
to provide robust predictions and resist overfitting by 
averaging multiple tree-based models. XGBoost, a gra-
dient-boosted decision tree algorithm, is highly efficient 
and delivers exceptional performance on structured data 
by optimizing both speed and accuracy during train-
ing. CatBoost, another gradient-boosting algorithm, is 
designed to handle categorical features effectively, pro-
viding high accuracy while minimizing overfitting, even 
in complex datasets. These models were selected for their 
complementary strengths, ensuring a reliable and high-
performing classification pipeline for esophageal cancer 
grading.

Training and validation pipeline
The integrated feature set was split into three subsets: 
70% for training, 15% for validation, and 15% for test-
ing. This division ensured a thorough evaluation of the 
classification models. The models were trained on the 
training set, and their hyperparameters were fine-tuned 
using grid search and cross-validation to get the best 

performance possible. The validation subset was used 
to assess the models based on key metrics like accuracy, 
sensitivity, and the area under the receiver operating 
characteristic curve (AUC). This approach helped make 
sure the models performed well on new, unseen data, 
while still providing accurate diagnostic results. By com-
bining radiomic and deep learning features, along with 
advanced techniques for reducing data complexity and 
using powerful machine learning models, the proposed 
framework offers a comprehensive, scalable, and easy-to-
understand solution for esophageal cancer grading.

Hyperparameter tuning and optimization
To improve the performance of both machine learn-
ing and deep learning models, hyperparameter tun-
ing was conducted. For machine learning models like 
XGBoost, CatBoost, and Random Forest, a grid search 
with 5-fold cross-validation was used to find the best set-
tings for important parameters such as the number of 
estimators, learning rate, and maximum depth. For deep 
learning models like DenseNet121 and EfficientNet-B0, 
hyperparameters such as batch size, learning rate, drop-
out rate, and the number of fully connected layers were 
tuned using a combination of grid search and Bayesian 
optimization.

The Adam optimizer was chosen with an initial learn-
ing rate of 1e-4. An early stopping mechanism was also 
used to monitor the validation loss and prevent overfit-
ting. All models were trained for up to 1000 epochs, and 
key performance metrics, such as accuracy, sensitivity, 
and AUC, were evaluated on a separate test set to ensure 

Fig. 3  Architectures of deep transfer learning models
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the models would perform well on new data. These tun-
ing techniques played an essential role in making sure the 
study’s findings were robust, efficient, and reproducible.

Hardware and software specifications
The experiments were carried out on a high-performance 
computing system that included an NVIDIA Tesla V100 
GPU (32 GB VRAM), dual Intel Xeon Silver 4210 pro-
cessors, and 256 GB of RAM. The system ran Ubuntu 
20.04, ensuring it was compatible with the latest versions 
of deep learning frameworks. All models were developed 
using Python 3.9, along with libraries such as TensorFlow 
2.8, PyTorch 1.12, and Scikit-learn 1.1. Image prepro-
cessing and radiomic feature extraction were performed 
using 3D Slicer and the Standardized Environment for 
Radiomics Analysis (SERA) toolkit. The use of CUDA 
11.6 and cuDNN 8.3 helped optimize GPU acceleration 
for deep learning tasks.

Results
Reliability levels based on ICC values
Statistically significant differences were observed 
between low- and high-grade groups for age, gender, 
tumor size, and histological subtype (p < 0.05), with high-
grade tumors more frequently associated with older age, 
male gender, larger size, and adenocarcinoma histology. 
No significant difference was found in tumor location dis-
tribution. This stratification allows for a more clinically 
meaningful evaluation of model performance and reflects 
the grading criteria utilized during model development. 
Statistical analysis of the clinical and demographic char-
acteristics revealed significant differences in age, tumor 
size, and histological subtype across esophageal cancer 
grades. Patients with higher-grade tumors tended to be 
older (p < 0.001) and had significantly larger tumor sizes 
(p < 0.001), indicating a potential association between 
tumor progression and increased patient age. Addition-
ally, the prevalence of adenocarcinoma increased in more 
advanced stages (p = 0.003), suggesting histological shifts 
as the disease progresses. However, no significant differ-
ences were observed in gender distribution (p = 0.12) or 
tumor location (p = 0.09), implying that these factors do 
not strongly influence cancer grade. These findings pro-
vide insights into the clinical progression of esophageal 
cancer and highlight the importance of tumor size and 
histology in disease severity assessment.

The radiomic features were categorized based on 
their reliability, as determined by their ICC values. It 
breaks down the distribution of features, indicating how 
many had excellent, good, moderate, or poor reliabil-
ity. This categorization is crucial for ensuring that only 
the most reliable features are used in further analyses, 
which strengthens the overall reliability of the study. 
Out of the 215 features evaluated, most were found to 

have excellent reliability (ICC > 0.90) or good reliability 
(0.75 < ICC ≤ 0.90). These reliable features were spread 
across 11 categories, including tumor morphology, local 
intensity, and various texture metrics like co-occurrence 
matrix and size zone matrix features. To evaluate inter-
observer variability, tumor segmentation was performed 
independently by three experienced radiologists at dif-
ferent time points. The agreement between segmenta-
tions was quantified using the Dice Similarity Coefficient 
(DSC) and ICC. The obtained DSC values (≥ 0.85) and 
ICC values (> 0.90) confirmed high consistency in the 
multi-segmentation strategy, ensuring that feature 
extraction was reliable and reproducible across different 
annotators.

A correlation analysis was conducted to examine the 
relationship between radiomic features and key clinical 
variables, including tumor grade, tumor size, patient age, 
and tumor location. Spearman’s correlation coefficient 
was used to assess statistical associations. The analysis 
revealed that tumor size had a strong positive correla-
tion with first-order intensity features (ρ = 0.62, p < 0.001), 
suggesting that larger tumors exhibit distinct intensity 
distributions. Tumor grade showed a significant correla-
tion with texture-based radiomic features, particularly 
co-occurrence matrix features (ρ = 0.54, p < 0.01), indi-
cating that higher-grade tumors tend to have greater 
heterogeneity. A weak but statistically significant correla-
tion was observed between patient age and morphology 
features (ρ = 0.21, p = 0.03), suggesting subtle structural 
differences in tumors among older patients. However, no 
significant correlation was found between tumor loca-
tion and radiomic feature distribution (p > 0.05), implying 
that textural and morphological characteristics are rela-
tively consistent across different anatomical regions of 
the esophagus. These findings highlight the potential of 
radiomic features as imaging biomarkers for tumor char-
acterization and further support their clinical relevance 
in esophageal cancer grading. A detailed summary of 
correlation coefficients and p-values is provided in the 
supplementary materials.

Figure 4 illustrates the distribution of radiomic fea-
tures across the four reliability categories (excellent, 
good, moderate, and poor) based on ICC values. The 
plot provides a visual representation of the robustness 
of features within each category, emphasizing the pre-
dominance of features with high reliability. This visual-
ization underscores the careful selection of reproducible 
features, ensuring the robustness of the study’s analytical 
framework.

For deep feature extraction, features were obtained 
from the Global Average Pooling layers of two pre-
trained networks: DenseNet121 and EfficientNet-B0. 
DenseNet121 produced 1,024 features from its Global 
Average Pooling layer, while EfficientNet-B0 generated 
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1,280 features. These features capture complex, high-
dimensional representations of tumor characteristics 
and were then categorized based on their reliability, 
which was assessed in terms of discriminative power 
and reproducibility. The reliability of features from both 
DenseNet121 and EfficientNet-B0 was evaluated and cat-
egorized into four levels: excellent, good, moderate, and 
poor.

For DenseNet121, 53% of the extracted features were 
classified as poor reliability, while 21% were considered 
excellent, 12% good, and 14% moderate. On the other 
hand, EfficientNet-B0 showed a higher proportion of 
features with poor reliability, with 65% falling into this 
category. The remaining features were distributed as 
6% excellent, 19% good, and 10% moderate. Figures  5 
and 6 display the reliability distribution of the deep fea-
tures extracted from DenseNet121 and EfficientNet-B0, 
respectively.

Esophageal cancer grading: model performance 
comparison
For radiomic features, XGBoost with Recursive Feature 
Elimination (RFE) showed the best performance, achiev-
ing an AUC of 91.36%, an accuracy of 90.24%, and a sen-
sitivity of 89.80% on the testing set (Fig.  7). CatBoost 
combined with Principal Component Analysis (PCA) 
performed slightly lower, with an AUC of 88.46% and 
accuracy of 86.36%. Random Forest, even with PCA fea-
ture selection, was the weakest performer, with an AUC 

of 83.29% and accuracy of 82.27%. This result highlights 
the limitations of Random Forest when handling high-
dimensional radiomic features.

When deep features were extracted using 
DenseNet121, XGBoost with PCA again performed the 
best, achieving an AUC of 91.44% and accuracy of 90.19% 
on the testing set. CatBoost with RFE achieved an AUC 
of 87.20% and accuracy of 86.10%, while Random For-
est with PCA had a lower performance with an AUC 
of 84.27% and accuracy of 83.27% (Fig.  8). Using Effi-
cientNet-B0 for deep feature extraction, similar trends 
were observed. CatBoost with RFE outperformed the 
other models, reaching an AUC of 94.20% and accuracy 
of 95.56% (Fig.  9). XGBoost with PCA followed closely, 
achieving an AUC of 92.44% and accuracy of 92.19%. 
Random Forest continued to underperform with an AUC 
of 83.18% and accuracy of 82.77%.

Combining radiomic and deep features resulted in sig-
nificant improvements across models. XGBoost with 
RFE on combined features achieved the highest AUC 
of 96.70%, accuracy of 96.71%, and sensitivity of 95.44% 
on the testing set (Fig. 10). CatBoost with RFE also per-
formed well, with an AUC of 95.25% and accuracy of 
95.26%. Random Forest with PCA again lagged behind, 
achieving an AUC of 87.28% and accuracy of 88.17%. In 
a comparison of direct deep learning models, Efficient-
Net-B0 outperformed DenseNet121, achieving an AUC 
of 92.16% and accuracy of 91.18% (Fig.  11). However, 
ensemble models combining both DenseNet121 and 

Fig. 4  Distribution of radiomic features across reliability categories
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EfficientNet-B0 features provided the best performance, 
with an AUC of 95.14%, accuracy of 94.88%, and sensi-
tivity of 93.80% on the testing set. This demonstrates the 
superior ability of ensemble models to enhance predic-
tive accuracy in esophageal cancer grading.

Figure 12 shows the training and loss curves for 
the end-to-end deep learning networks, plotted over 

1000 epochs. The curves track the performance of the 
networks across three key evaluation metrics: AUC, 
accuracy, and sensitivity. These metrics were closely 
monitored during the training process, providing valu-
able insights into the model’s convergence behavior and 
overall stability. The training curves illustrate the gradual 
improvement in performance over time, highlighting the 

Fig. 6  Reliability distribution of deep features extracted from EfficientNet-B0

 

Fig. 5  Reliability distribution of deep features extracted from DenseNet121
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model’s ability to learn from the data. The loss curves 
demonstrate the reduction in error throughout the train-
ing phase, indicating how well the models were opti-
mizing. This figure enables a direct comparison of the 
models’ learning capabilities and generalization. It also 
shows which deep learning models exhibited the most 
efficient convergence and consistent performance across 
the full 1000 epochs, helping to assess their robustness 
and ability to handle the task.

Figure 13 presents the attention maps generated by the 
transformer-based models, overlaid on the correspond-
ing images. These maps highlight the regions of interest 
that the models focus on during the classification pro-
cess. By incorporating attention mechanisms, the mod-
els were able to emphasize critical areas of the image 
that are essential for accurate tumor grading in esopha-
geal cancer. The attention maps visually illustrate how 
the models prioritize specific features, offering a more 
interpretable view of the deep learning decision-making 
process. These maps reveal which anatomical structures 
the model deems most relevant for making accurate pre-
dictions. By providing insights into the model’s focus, the 
attention maps help to enhance the interpretability of the 

deep learning models, contributing to their overall accu-
racy and robustness in classifying esophageal cancer. It is 
important to note that the attention maps presented in 
Fig. 13 reflect cropped image regions centered around the 
segmented tumors. The areas of focus, while appearing to 
lie outside the tumor in some cases, are in fact within the 
peritumoral zone included in the segmentation masks. 
These regions were retained due to their diagnostic value 
in capturing surrounding textural variations. The atten-
tion mechanisms accurately highlight these intratumoral 
and peritumoral features, reinforcing the model’s inter-
pretability and its ability to localize clinically relevant 
structures for esophageal cancer grading.

To visually assess classification performance, ROC 
curves were plotted for the optimal models during 
training and testing (Figs.  14 and 15). In the training 
phase, the XGBoost with RFE model achieved the high-
est AUC of 97.57%, followed closely by CatBoost with 
PCA (AUC = 96.26%). For the testing set, XGBoost with 
RFE again outperformed other models with an AUC of 
96.70%, while CatBoost with RFE achieved an AUC of 
95.25%. These ROC curves, displayed in Figs. 14 and 15, 
provide visual confirmation of the strong discriminatory 

Fig. 7  Heatmap of model performance using radiomic features
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ability of these models in distinguishing between low- 
and high-grade esophageal cancers.

Discussion
This study presents a novel approach for esophageal can-
cer grading by integrating radiomic features with deep 
learning techniques, enhanced by attention mechanisms. 
The goal is to improve diagnostic accuracy and reproduc-
ibility, addressing the limitations of traditional diagnostic 
methods, which often suffer from subjective interpreta-
tion and inconsistent feature extraction. Our framework 
leverages both radiomic features, which are interpretable 
and clinically relevant, and deep learning models—spe-
cifically DenseNet121 and EfficientNet-B0—that capture 
complex tumor characteristics directly from imaging 
data. The attention mechanism refines this process by 
focusing the model’s attention on diagnostically signifi-
cant regions, enhancing prediction accuracy and ensur-
ing that subtle morphological and textural variations are 
properly analyzed. Additionally, the multi-segmentation 
strategy employed in this study improves the reproduc-
ibility of the extracted features, ensuring the robustness 
of results and reducing variability, which is a common 

challenge in medical image analysis. To ensure optimal 
deep feature extraction, this study utilized DenseNet121 
and EfficientNet-B0, two well-established architectures 
in medical imaging. DenseNet121’s densely connected 
layers improve gradient flow and enhance feature reuse, 
making it highly efficient for learning complex imaging 
patterns. EfficientNet-B0, leveraging a compound scal-
ing approach, achieves high classification accuracy with 
reduced computational cost. These models were selected 
due to their complementary strengths in feature extrac-
tion and classification. The results demonstrated that 
integrating both networks in an ensemble framework fur-
ther improved cancer grading performance. Future work 
may explore additional architectures, such as ResNet 
and Inception, to assess generalizability across different 
datasets.

When compared to existing studies in the field, our 
approach demonstrates notable improvements in sev-
eral areas, including model performance, interpretabil-
ity, and clinical applicability. For model performance, our 
study shows a significant enhancement in accuracy and 
reproducibility compared to previous works in radiomics 
and deep learning for esophageal cancer prediction. For 

Fig. 8  Heatmap of model performance with DenseNet121 deep features
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example, Xie et al. [39]combined radiomics and deep 
learning for predicting radiation esophagitis in esopha-
geal cancer patients treated with volumetric modulated 
arc therapy (VMAT), achieving an AUC of 0.805 in exter-
nal validation. While promising, their model was limited 
by dose-based features and lacked attention mechanisms 
to focus on relevant regions. Our approach integrates 
attention-enhanced deep learning, improving diagnostic 
accuracy and model interpretability, allowing clinicians 
to better understand the decision-making process.

Furthermore, our framework’s multi-segmentation 
strategy strengthens the model’s generalizability and 
minimizes variability arising from image segmentation 
inconsistencies. This approach is superior to other mod-
els, such as the one developed by Chen et al. [40] for pre-
dicting lymph node metastasis in esophageal squamous 
cell carcinoma (ESCC), which combined handcrafted 
radiomic features with deep learning but did not control 
for segmentation variability. Our multi-segmentation 
ensures that features are both reliable and robust across 
repeated segmentations, a crucial aspect for clinical 
applications where precision is key.

A significant strength of our study is the integration 
of radiomic and deep learning features. This combined 
approach has demonstrated superior performance in 
various oncology-related studies. For example, Yang et 
al. [41] showed that CT-based radiomics could predict 
the T stage and tumor length in ESCC with AUC val-
ues of 0.86 and 0.95, respectively. However, their reli-
ance on handcrafted radiomic features limited the ability 
to capture complex, non-linear tumor characteristics. 
Our framework, in contrast, combines the interpretabil-
ity of radiomics with the high-dimensional, hierarchical 
feature extraction capabilities of deep learning models. 
This integration allows for more accurate predictions 
of cancer grading and provides a comprehensive repre-
sentation of tumor characteristics, which is essential for 
personalizing treatment strategies. The combination of 
deep learning and radiomics is particularly important 
in clinical decision-making. Radiomic features, such as 
texture and shape, provide clinicians with meaningful 
insights into tumor biology. Meanwhile, the deep features 
extracted from DenseNet121 and EfficientNet-B0 cap-
ture subtle, complex patterns that are not easily identified 
through traditional methods. This dual approach offers a 

Fig. 9  Heatmap of model performance with EfficientNet-B0 deep features

 



Page 15 of 20Alsallal et al. BMC Gastroenterology          (2025) 25:356 

more comprehensive view of the tumor, supporting more 
informed and effective clinical decisions.

Reproducibility is another key advantage of our study. 
Variability in tumor segmentation is a significant issue 
in medical imaging, as it can introduce errors that 
compromise the reliability of predictive models. Sev-
eral studies, such as those by Li et al. [40] and Du et al. 
[42], have developed radiomic models for esophageal 
cancer diagnosis, but none have applied as rigorous a 
multi-segmentation strategy as our study. We mitigate 
segmentation variability by performing three separate 
segmentations for each tumor and evaluating the con-
sistency of the extracted features. This ensures that the 
data fed into both radiomics and deep learning models is 
reliable, which enhances the reproducibility of the final 
predictions.

Additionally, our study features comprehensive valida-
tion across a large and diverse dataset, ensuring robust 
performance across various patient populations. This 
stands in contrast to other studies, like Chen et al. [40], 
which primarily evaluated model performance within a 
single institution. Our validation process not only bench-
marks performance in terms of accuracy, sensitivity, 

and specificity but also thoroughly assesses the model’s 
clinical applicability. In summary, the combination of 
radiomic and deep learning features, the integration of 
attention mechanisms, and the multi-segmentation strat-
egy make our approach highly effective for esophageal 
cancer grading. It addresses the challenges faced by tra-
ditional methods and enhances the clinical applicability, 
interpretability, and reproducibility of esophageal cancer 
prediction.

Despite the promising results of our proposed frame-
work, several limitations need to be considered. First, the 
framework depends on high-quality annotated datasets 
for both radiomic feature extraction and deep learning 
model training. Obtaining such datasets can be difficult, 
and variations in tumor segmentation and image qual-
ity across different clinical settings may affect the con-
sistency of the results. Moreover, the model’s ability to 
generalize could be limited by the demographic and clini-
cal diversity of the dataset used. To improve this, future 
studies should aim to test the model across multiple 
centers and more diverse patient populations to ensure 
its effectiveness and applicability in real-world clinical 
environments.

Fig. 10  Heatmap of model performance with combined features
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Another area for improvement is the inclusion of addi-
tional imaging modalities, such as PET or MRI scans, 
which could provide extra valuable information and 
further improve the model’s diagnostic accuracy. Future 
research could explore how these modalities could be 
integrated into the framework. Additionally, using more 
advanced attention mechanisms could improve the mod-
el’s interpretability and decision-making processes. This 
would allow healthcare providers to better understand 
why the model makes certain predictions, which is key 
for clinical adoption. Lastly, long-term validation of the 
framework’s impact on treatment outcomes and patient 
prognosis is essential. It is also important to investigate 
the possibility of real-time implementation of the model 
in clinical workflows to evaluate its practical use in sup-
porting clinical decision-making.

Conclusion
In conclusion, our study marks a significant step forward 
in esophageal cancer grading. By combining the strengths 
of radiomics and deep learning, we have been able to 
achieve higher diagnostic accuracy, reproducibility, and 
interpretability. The integration of attention mechanisms, 
the use of a multi-segmentation strategy, and the combi-
nation of radiomic features with deep learning insights 

have allowed us to develop a framework that outperforms 
previous models, predicting tumor characteristics with 
greater precision. This approach not only improves our 
understanding of tumor behavior but also holds great 
potential for optimizing personalized treatment plans for 
patients with esophageal cancer.

Fig. 11  Heatmap of end to end and ensemble deep learning models performance
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Fig. 12  Training and loss curves for end-to-end networks (1000 Epochs)
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Fig. 14  ROC curves for the training dataset using the two best-performing classification models

 

Fig. 13  Attention maps generated by transformer-based models on esophageal cancer images, highlighting regions of interest for tumor grading
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